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Abstract—The number of optimization algorithms has seen a
rigorous growth in the past years, leading to a variety of different
algorithms. In system and control theory, state space models
are a unified basis of further analysis and control of dynamic
systems. In this work we show how optimization problems and
algorithms can be generically modeled in the unified state space
framework. This approach facilitates the comparison among
different algorithms and the design of novel hybrid optimization
schemes. As a further key advantage it opens way for the
application of powerful Bayesian algorithms for the solution of
optimization problems. This includes the active consideration of
the discretization error as well as additional information about
the quality of obtained solutions.

I. INTRODUCTION

Optimization can generally be referred to as solving a
mathematical problem of the kind

x∗ = arg min Ψ(x) (1)
s.t. C(x) ≤ 0, (2)

where Ψ : RN → R1 is called the objective function, the
vector x ∈ RN contains the variables of interest and C(x)
is a vectorial function which expresses possible constraints
on x. An enormous variety of algorithms for the solution of
the optimization problem 2 is available, where methods can be
grouped in deterministic and stochastic methods. Deterministic
methods most often make use of gradient and curvature infor-
mation in order to efficiently detect the minimum. Stochastic
methods rely on some sort of randomness to sample the
parameter space in search for the minimum. Of course, hybrid
algorithms have been proposed to combine the advantages of
the two classes of algorithms.

Classical first and second order deterministic methods try to
minimize Ψ by determining a descent direction out of gradient
or gradient and Hessian information of Ψ. The steepest descent
method, e.g., calculates consecutive steps using

xk+1 = xk − sg(xk), (3)

where g denotes the gradient ∇Ψ and s is the step width.
More elaborate methods calculate Newton steps and make use
of line search techniques [1].

With the availability of increased computational power,
stochastic optimization methods have become popular.
Stochastic methods explore the search space RN for a mini-
mum by evaluating Ψ for ”randomly” drawn vectors xi. As

these methods are computationally heavy, efficient schemes
for the generation of candidate solutions are necessary. Several
effects from nature and biology were adapted to design such
methods. Prominent examples are methods like Particle Swarm
Optimization (PSO) [2], Differential Evolution (DE) [3],
Genetic Algorithms (GA), and ant colony optimization. In
the presence of the enormous variety of differently labeled
stochastic algorithms it is often hard to distinguish the differ-
ences, and more important, to rate the efficiency and suitability
of methods for certain applications. In this paper, which is
the first part of two contributions on the use of state space
approaches for optimization and the similarities between the
two disciplines, we want to present the idea of a system
theoretic framework for optimization algorithms as well as the
use of ideas of state estimation for optimization. Numerical
examples demonstrating the power of this concept and the
application of sequential Bayesian estimation algorithms are
presented in [4].

II. SYSTEM THEORY
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Fig. 1. Block diagram of a nonlinear time variant discrete time state space
system.

In system and control theory, dynamic systems are con-
veniently described using state space models. A state space
model can be formulated in continuous or discrete time and
consists of internal state variables, measurable output quanti-
ties, and optional input quantities. The models are commonly
formulated using systems of first order differential or differ-
ence equations. A general nonlinear time variant stochastic
discrete time state space system is given by

xk+1 = F k(xk) + Bk(uk) + wk (4)
yk = Hk(xk) + vk, (5)

where (4) is the state evolution equation with F describing
the evolution of the state vector x from time step k towards



time step k + 1. The state is subjected by the input variables
u ∈ RN via the input function B : RM → RN and a
random noise process w with arbitrary probability distribution.
If the system is an autonomous system, the input function B
vanishes. In general, the state x is not directly observable.
The measurable quantities y are linked to the system state
in the measurement equation (5) by the function H . The
measurement is affected by measurement noise v. The block
diagram of the state space system is shown in Fig. 1. One of
the most important problems in conjunction with state space
systems is the estimation of the unknown system state x
given the noisy observations {y1, . . . ,yk−1,yk} and available
prior knowledge about the system [5]. Thus, it is essentially
an optimization problem where some suitable norm of the
estimation error e = x − x̂ with the state estimate x̂
is minimized. Powerful state estimation methods have been
developed, including the Luenberger observer, Kalman filter,
H-infinity filter, unscented filter, particle filter, and Markov
chain Monte Carlo methods.

III. OPTIMIZATION WITH STATE SPACE MODELS

From a system theoretic view, iterative optimization algo-
rithms may be regarded as time discrete dynamical systems.
At every iteration or time step, respectively, a new candidate
solution or population of candidate solutions is generated
based on calculations, heuristics, or randomness.

Deterministic optimization algorithms in state space form
can be derived by introducing feedback from the output to
the input with a suitable control law. In this case a linear
state equation with F k(xk) = Ixk, Bk(uk) = Iuk, and
wk = 0, with the identity matrix I can be defined. It
should be noted that the stochastic noise contribution vanishes
for deterministic algorithms. The measurement equation is
composed of the objective function and a noise contribution
that can be attributed to discretization and measurement noise,

yk = Ψ(xk) + vk, (6)

Using the feedback law uk = −sg(xk), the steepest de-
scent method is easily obtained. Similarly, other optimization
algorithms can be formulated as a dynamic system control
problem.

Stochastic optimization can be formulated in state space by
setting the deterministic input vector uk = 0 and the process
noise wk ∼ p(0,Qk) with a suitably chosen probability
distribution p, leading to an autonomous system. Please note
that this input wiring is converse to the deterministic case. Now
the optimization task is essentially a state estimation problem.
The hidden states of the system given the optimal and actually
observed objective function values need be recovered from
noisy observations. Both single point and population-based
methods can be modeled with this approach. An advantage of
a state space formulation is that it enables the use of powerful
stochastic state estimation algorithms like the Kalman filter,
particle filter, or sequential Monte Carlo methods.

With the two orthogonal state space formulations for de-
terministic and stochastic optimization methods, the design of

well-balanced hybrid optimization algorithms is facilitated due
to the simple system structure. In addition, two major aspects
build a general difference between classical optimization and
state space approaches:

• Measurement Noise is taken explicitly into concern.
• Prior knowledge is extensively used.

While prior knowledge can be directly interpreted as a form
of constraints, measurement noise is a less used term with
respect to optimization. In this context, it can be interpreted
as modeling or discretization error of the computer model.
Recently the use of reduced order models has gained in interest
for optimization [6]. However, neglecting this error may result
in deviated results for the real problem. Prior information
about the measurement/model error can be used to overcome
adverse effects caused by reduced models, e.g. by applying
the enhanced error model [7]. This allows to take advantage
of the decreased computation time of simplified models, but
without losing quality in the result.

IV. CONCLUSION

It was demonstrated that optimization algorithms, both
deterministic and stochastic, can be formulated within a sys-
tem theoretic state space approach. While deterministic algo-
rithms correspond to deterministic feedback control, stochastic
algorithms are related to state estimation problems. Both
approaches can be combined to obtain hybrid optimization
algorithms. Key advantages of the state space formulations
are the explicit consideration of modeling and measurement
errors, the possibility to make use of available prior knowl-
edge, as well as the access to powerful control and state
estimation algorithms. The mentioned issues will be elaborated
and advantages discussed in more detail in the full paper.
The practical application of the presented framework will
be presented in a companion paper [4] by means of sample
algorithms and an optimization example.
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